The Transcendence of Certain Infinite Series

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irrationality of certain infinite series

In this paper a new direct proof for the irrationality of Euler's number e = ∞ k=0 1 k! is presented. Furthermore, formulas for the base b digits are given which, however, are not computably effective. Finally we generalize our method and give a simple criterium for some fast converging series representing irrational numbers.

متن کامل

On the transcendence of certain Petersson inner products

‎We show that for all normalized Hecke eigenforms $f$‎ ‎with weight one and of CM type‎, ‎the number $(f,f)$ where $(cdot‎, ‎cdot )$ denotes‎ ‎the Petersson inner product‎, ‎is a linear form in logarithms and‎ ‎hence transcendental‎.

متن کامل

Irrationality of certain infinite series II

In a recent paper a new direct proof for the irrationality of Euler's number e = ∞ k=0 1 k! and on the same lines a simple criterion for some fast converging series representing irrational numbers was given. In the present paper, we give some generalizations of our previous results. 1 Irrationality criterion Our considerations in [3] lead us to the following criterion for irrationality, where x...

متن کامل

On the transcendence of some infinite sums

In this paper we investigate the infinite convergent sum T = ∑∞ n=0 P (n) Q(n) , where P (x) ∈ Q[x], Q(x) ∈ Q[x] and Q(x) has only simple rational zeros. N. Saradha and R. Tijdeman have obtained sufficient and necessary conditions for the transcendence of T if the degree of Q(x) is 3. In this paper we give sufficient and necessary conditions for the transcendence of T if the degree of Q(x) is 4...

متن کامل

Transcendence of certain k-ary continued fraction expansions

Let ξ ∈ (0, 1) be an irrational with aperiodic continued fraction expansion: ξ = [0; u0, u1, u2, . . .], and suppose the sequence (un)n≥0 of partial quotients takes only values from the finite set {a1, a2, . . . , ak} with 1 ≤ a1 < a2 < · · · < ak, k ≥ 2. We prove that if the frequency of a1 (or ak) in (un)n≥0 is at least 1/2, and (un)n≥0 begins with arbitrarily long blocks that are almost squa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2005

ISSN: 0035-7596

DOI: 10.1216/rmjm/1181069744